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We investigate the conditions that produce a phase transition from an ordered
to a disordered state in a family of models of two-dimensional elements with a
ferromagnetic-like interaction. This family is defined to contain under the same
framework, among others, the XY-model and the Self-Driven Particles Model
introduced by Vicsek et al. Each model is distinguished only by the rules that
determine the set of elements with which each element interacts. We propose a
new member of the family: the vectorial network model, in which a given frac-
tion of the elements interact through direct random connections. This model is
analogous to an XY-system on a network, and as such can be of interest for a
wide range of problems. It captures the main aspects of the interaction dynamics
that produce the phase transition in other models of the family. The network
approach allows us to show analytically the existence of a phase transition in
this vectorial network model, and to compute its relevant parameters for the
case in which all elements are randomly connected. Finally we study numerically
the conditions required for a phase transition to exist for different members
of the family. Our results show that a qualitatively equivalent phase transition
appears whenever even a small amount of long-range interactions are present
(or built over time), regardless of other equilibrium or non-equilibrium proper-
ties of the system.
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1. INTRODUCTION

There is a great conceptual and practical interest in finding criteria that
predict the existence or absence of phase transitions in a physical system. In



the context of equilibrium thermodynamics, the results of Hohenberg (9) and
Mermin and Wagner, (13) for example, show that no phase transition con-
nected to the appearance of long-range order can exist at a finite tem-
perature in low-dimensional systems.2 In the same framework, mean field

2 The Mermin–Wagner theorem does not forbid, however, transitions that do not imply long-
range order such as the Kosterlitz–Thouless one, (12) which will not be discussed in this paper.

theories predict the existence of a phase transition in systems in which
the minimum of the free energy functional undergoes a bifurcation. (7, 10)

Unfortunately, there are no similar results on the existence or absence of a
phase transitions for non-equilibrium systems. (14)

One interesting example of a non-equilibrium phase transition appears
in the Self-Driven Particles Model (SDPM) proposed in 1995 by Vicsek
et al. to describe the collective motion of large groups of organisms such
as herds of quadrupeds or groups of migrating bacteria. (19) The SDPM
is analogous to a Monte-Carlo realization of the XY-model (1) in which,
rather than being fixed to a lattice, each spin moves on the two-dimen-
sional (2D) plane by following an underlying dynamic. Although the
interaction rule between elements is of the same type for both the SDPM
and the XY-model, the rules that determine which elements interact with
which other elements at any moment in time are different. This difference
produces dramatic changes in the response of the system. While the
Mermin–Wagner theorem rules out any phase transition implying long
range order in the 2D equilibrium XY-model, numerical simulations
have shown that such transition appears in the SDPM when the noise
level (taking the role of the temperature) is reduced to a finite critical
value. (4, 5, 19) As pointed out by Toner and Tu, the existence of a long-range
order phase transition in the SDPM is a consequence of the long-range
correlations that appear in the system over time. Indeed, using a non-equi-
librium continuum dynamical model that preserves the symmetries of the
SDPM, they have shown the existence of a stable spontaneous symmetry
broken state even in two dimensions. (15–18)

In the present work we will take a different perspective. Our main
objective will be to show how a network approach is helpful in the under-
standing of the SDPM and other related non-equilibrium models. In the
first part of this article we will explore the points in common between the
SDPM phase transition and the one appearing in network-like models in
which the long-range interactions are introduced in the system explicitly.
In order to do this, we define a family of models that contains both the
XY-model and the SDPM, and we introduce a new model within this
family, the vectorial network model (VNM) in which the topology of the
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network determines which elements interact. Each member model of the
family is distinguished of the others only by the way in which the inter-
acting elements are selected, regardless of other equilibrium or non-equi-
librium properties. We will then show numerically that a similar order to
disorder phase transition exists for all the different cases analyzed in which
there are long-range interactions, including this newly introduced VNM.

One of the interests of exploring the analogies between the SDPM
phase transition and the VNM one is that network-like models can be
explored analytically by using techniques similar to the ones applied in
mean field theories. In the second part of this article we will use this
approach to compute the analytic solution showing the order to disorder
phase transition in a VNM with a completely random topology. This result
stems from the generalization of the solutions found for the neural network
presented in ref. 8, which exhibits an analogous phase transition. As such,
it can be of wider interest in the study of neural networks with components
characterized by vectors with rotational degrees of freedom, as for example
the visual cortex. (2, 3) Consequently, we will describe with certain detail this
analytic computation.

The paper is organized as follows. In Section 2, we introduce the dif-
ferent models of the family with a common notation. Section 3 presents
our main numerical results, namely, the existence of an analogous order to
disorder phase transition in all the members of the family containing long-
range interactions. The analytic calculation that fully solves the phase
transition for the random VNM is detailed in Section 4. This rather tech-
nical computation allows us to obtain closed expressions for all the relevant
parameters that characterize the transition, such as its critical exponent, its
amplitude and the critical value of the control parameter at which the
phase transition occurs. Finally, Section 5 is our conclusion.

2. A FAMILY OF MODELS

Let us first present under the same framework all of the different
models that are studied in this paper. This will allow us to define a family
of models which includes the XY-model, the SDPM, and the VNM.

Consider a 2D periodic square box of sides L containing N elements
(which can correspond to spins or self-driven particles) represented by 2D
on-plane vectors {vF1(t), vF2(t),..., vFN(t)} with constant magnitude v0. At
every time step t, each element vFi(t) interacts with a set of Ki(t) elements
of the system, denoted by Si(t)={vFi1

(t), vFi2
(t),..., vFiKi(t)

(t)}. Given the sets
Si(t) of interacting elements for i=1,..., N, the state of the system is fully
determined by the angles {h1(t), h2(t),..., hN(t)} that each one of the elements
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{vF1(t), vF2(t),..., vFN(t)} forms with a given axis (say the X-axis). These angles
are then updated through the interaction rule

hi(t+Dt)=Angle 5 C
vFj ¥ Si(t)

vFj(t)6+ti(t), (1)

where ti(t) is a random variable uniformly distributed in the interval
[ − g/2, g/2]. The dynamics of the system can thus be set from purely
deterministic to purely random by changing the value of the noise intensity
g from 0 to 2p.

We define a common order parameter Y for all models in this family
as

Y= lim
T Q .

N Q .

1
NT

F
T

0

1
v0

: C
N

i=1
vFi(t) : dt, (2)

which corresponds to the magnetization in the context of ferromagnetism.
It measures the degree of order in the system: Y=0 if all the vFi are
randomly oriented and Y=1 if all are aligned.

Using the general definitions presented above, the different models
within the family can be obtained by using different sets Si(t) of interacting
elements.

• The Monte-Carlo dynamics of the XY-model is recovered by
placing all the elements on a 2D lattice and then defining Si(t) as the
constant set of nearest neighbors of the element i.

• The non-equilibrium dynamics of the SDPM (19) is obtained by
allowing each element to move in the direction of the new angle hi(t+Dt)
given in (1), updating its position xFi(t) according to the kinematic rule

xFi(t+Dt)=xFi(t)+vFi(t+Dt) Dt. (3)

The set Si(t) at every time step is then defined as containing all the
elements within a vicinity of size r centered at xFi(t).

We now define two additional models within the family.

• The first one, the Randomized Self-Driven Particles model (R-SDPM),
is analogous to the SDPM except for the fact that the kinematic rule (3) is
now replaced by a random repositioning of the particles in space. At every
time step, the new coordinates xFi(t+Dt) of each particle are chosen at
random, anywhere within the full L × L periodic domain. The sets Si(t) are
then defined as containing all elements within a vicinity of size r around
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xFi(t), in the same way as in the SDPM. The R-SDPM can be considered as
the v0 Q . limit of the SDPM and has the characteristic that long-range
correlations are introduced at every time step through this random mixing
of the particles.

• The second model is the VNM, where the elements are fixed in a 2D
lattice. Each set Si(t) consists of exactly K elements which are chosen with
probability p within the nearest K neighbors of element i, and with proba-
bility 1 − p from anywhere in the system (see Fig. 1). For p=1 every
element is connected to its first K neighbors and the network defines a
structured 2D topology, as in the XY-model. On the other hand, for p=0
every element is randomly connected to any other K elements of the
system, giving rise to a random network topology. It is worth mentioning
that for p ] 1 the random selections can be done either at every time-step
(annealed dynamics) or only at t=0 (quenched dynamics). As it has been
argued in refs. 6 and 8, for connections like the ones considered here
(which are established fully at random with any element of the system), the
two cases are equivalent.

It is worth mentioning that a model similar to our VNM was intro-
duced in ref. 11. Both models introduce a probability of having long-range
interactions in an equivalent way, although our system considers a 2D
lattice instead of 1D. However, the interactions between spins in the model

Fig. 1. Connectivity of three typical elements in the Vectorial Network Model (VNM). In
this model, each element is placed on a vertex of a 2D square lattice (represented by the
circles) and connected to K other elements. A fraction p of the K connections are to first
neighbors and a fraction 1 − p to any other element in the system. The figure shows the typical
linkages of three elements for the case with K=8 and p=7/8.
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of ref. 11 are given by the standard XY-model Hamiltonian in the context
of equilibrium statistical mechanics. The noise is introduced through the
temperature in a Boltzmann distribution and the simulations are carried
out by using the Metropolis-Monte Carlo algorithm. In contrast, our VNM
is a nonlinear dynamical system in which an additive noise is introduced
directly into the interaction rule (1).

Note that although the interacting elements are selected at random in
both the R-SDPM and the VNM, the randomness is introduced differently
in each case. In the latter model, topology imposes no restrictions on the
direct random linkages. In contrast, topology does force every element in
the R-SDPM to interact with itself (since it is always in its own vicinity)
and to interact reciprocally with others (since two interacting particles are
always contained in their mutual vicinities). Furthermore, in the VNM the
number of elements in each interaction set Si(t) is the same for all i and
all t, but in the R-SDPM, Ki(t) is a random variable with mean value
OKi(t)P=A(r) r, being A(r) the area of the vicinity of size r and r=N/L2

the mean density of the system.

3. NUMERICAL RESULTS

We will now present some numerical results showing the behavior of
the order parameter Y as a function of the noise level g for the models
described earlier.

Figure 2a displays the bifurcation diagram of Y(g) for the SDPM
(crosses) and the R-SDPM (solid line). To generate these curves we started
the simulation with all particles oriented in random directions. For each
value of g, we run the simulation for a time T long enough for the average
in Eq. (2) to reach a steady value. The curves shown in Fig. 2a were com-
puted for systems with N=2 × 104 elements in a 2D periodic square box of
area L2=2 × 103. For these values of N and L we used an averaging time
T=105. The vicinity within which other elements interact with any element
i was defined as a square of sides r=`15/10, centered at xFi(t). For these
values, the average density is r=10 and the mean number of elements in
each interaction set is OKi(t)P=15. To describe the dynamics of the
SDPM, the values of v0 and Dt also had to be specified since they appear in
the kinematic rule (3) which determines the motion of the elements. We
used v0=0.01 and Dt=1.

The figure shows the phase transition from the ordered to the dis-
ordered regime in the SDPM that has been reported in the literature. (4, 5, 19)

Note that this phase transition implying long-range order would be for-
bidden for an equilibrium system in view of the Mermin–Wagner theorem (13)
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Fig. 2. (a) Bifurcation diagram for the SDPM (crosses) and the R-SDPM (solid line). The
simulations were carried out with N=2 × 104 and choosing r and L such that OKi(t)P=15
(see main text). Both models display a continuous second order phase transition from
an ordered to a disordered state, in spite of the differences in their underlying dynamics.
(b) Bifurcation diagram for the VNM with p=0 (solid line) and p=0.99 (dashed line). The
simulations were performed with N=2 × 104 and K=15. For comparison, we re-plot the
R-SDPM curve shown in (a) (circles). This figure shows that the bifurcation diagrams of the
R-SDPM and the VNM are identical. The solid curve in bold is the plot of the analytic solu-
tion given in Eq. (17).

since the interactions are local at every moment in time. However, as
explained in refs. 15–18, the motion of the elements allows long-range
interactions to appear over time since two or more particles which initially
were beyond the interaction range r can eventually come together within
the same vicinity (see Fig. 3). Figure 2a also shows that an analogous phase
transition appears in the R-SDPM, in which the long-range interactions
between the particles are forced at every time step via the random reposi-
tioning of the particles within the box. It is then apparent that the existence
of a phase transition in this family of models does not depend on the
specific kinematic rule (3). The above suggests that any other updating rule
for the positions that generates long range interactions will also produce a
phase transition.

Although the SDPM phase transition is analogous to the R-SDPM
one, their details differ. In both cases it is a second order phase transition
with Y ’ (gc − g)b for |gc − g| ° 1. However, the critical value of the noise
gc as well as the critical exponent b are different in the two models. From
our numerical results we obtain b=1/2 for the R-SDPM. In contrast, it
has been claimed in ref. 4 that b % 0.42 ± 0.03 for the SDPM. Note that
this last value of the exponent cannot be read directly from the curve
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Fig. 3. The motion of the particles in the SDPM produces long-range correlations over time
as shown on this diagram. Two particles which at time t=0 are beyond the interaction range
can come together within the same vicinity at a later time.

displayed on Fig. 2a. Indeed, although the R-SDPM and SDPM curves
were computed for systems with the same number of particles, the higher
complexity of the history-dependent SDPM dynamics produces large fluc-
tuations in the instantaneous value of the mean velocity of the system (the
integrand in Eq. (2)). This increases the finite size effects, producing a less
steep curve in the vicinity of the phase transition. Simulations for bigger
systems (N=105), leading to the value b % 0.42 ± 0.03 for the SDPM, can
be found in ref. 4. For completeness, we show our SDPM curve in Fig. 2a
which was computed for N=2 × 104.

The bifurcation diagram for the VNM is shown on Fig. 2b for p=0
and p=0.99. To compare with the results on Fig. 2a, the simulations for
the VNM were carried out for systems with N=2 × 104 and K=15. We
used quenched connections and an averaging time T=105. Figure 2b
shows that the VNM also exhibits a similar second order phase transition
from an ordered to a disordered state when the noise intensity reaches a
critical value. Furthermore, the R-SDPM and the p=0 realization of the
VNM display identical curves despite the topological differences between
them described at the end of Section 2. Note that a phase transition is
observed in the VNM even for p=0.99 (only 1% of random connections).
However, we know that no transition would occur for p=1 (only local
connections), in view of the Mermin–Wagner theorem.3 This result under-

3 We checked this point in our numerical simulations, obtaining Y=1 only for g=0 and
Y % 0 for g > 0, as expected.

lines the critical role of a few long-range interactions in establishing an
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ordered phase, in a way that resembles the behavior observed in small-
world networks. (11, 20)

4. ANALYTIC SOLUTION

The numerical results presented in the previous section show that the
different models within the family that contain a mechanism allowing some
degree of long-range interactions exhibit a similar behavior. The R-SDPM
and the VNM with 0 [ p < 1 display a phase transition characterized by a
critical exponent b=1/2. Furthermore, for p=0 the bifurcation diagrams
of the R-SDPM and the VNM become identical. One advantage of the
network approach is that it allows us to go beyond the numerical simu-
lations, making an analytical calculation feasible. In this section we will
compute analytically the bifurcation diagram near the phase transition for
the VNM with p=0.

4.1. The Order Parameter

In the limit t Q ., the network reaches a steady state independent of
its initial configuration. Assuming that in the steady state all the angles
{h1, h2,..., hN} are statistically independent and follow the same probability
distribution Ph(a), with a ¥ [ − p, p], we have that the square of the order
parameter is given by

Y2= lim
N Q .

1
N2v2

0

7: C
N

i=1
vFi
: 28

= lim
N Q .

1
N2v2

0

75 C
N

i=1
cos(hi)6

2

+5 C
N

i=1
sin(hi)6

28

= lim
N Q .

1
N2v2

0

F
p

−p

F
p

−p

· · · F
p

−p

35 C
N

i=1
cos(hi)6

2

+5 C
N

i=1
sin(hi)6

24

× D
N

i=1
[Ph(hi) dhi].

In what follows, without loss of generality, we will set v0=1. Expanding
the square of the sums and using again the statistical independence of the
hi’s we get

Y2=5F
p

−p

Ph(a) cos(a) da6
2

+5F
p

−p

Ph(a) sin(a) da6
2

. (4)
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We thus obtain an expression for the order parameter Y in terms of Ph(a),
which is the function that will be used below to describe the state of the
system.

4.2. Some Definitions

Before computing Ph(a), the stationary distribution function followed
by the angles hi, it is convenient to define the following intermediate
quantities:

• Ph(a; t), the instantaneous probability distribution associated with
an arbitrary angle hi(t). In the limit t Q . this function will converge to
the stationary distribution Ph(a).

• VFK(t), the vectorial sum of the K vectors in the set Si(t) (the K
vectors that interact with vFi(t)):

VFK(t) — C
vFj(t) ¥ Si(t)

vFj(t).

• PK(a; t), the instantaneous probability distribution of the angle
of VFK(t). The stationary distribution PK(a) is then defined as PK(a)=
limt Q . PK(a; t).

• Pg(t), the probability distribution of the noise, which is time inde-
pendent and given by

Pg(t)=˛1/g if t ¥ [ − g/2, g/2],

0 otherwise.

Note that Ph(a; t) and PK(a; t) are defined for any instant in time. In
the limit t Q . they transform into their respective stationary probability
distributions, Ph(a) and PK(a).

4.3. An Integral Equation for Ph(a; t)

From Eq. (1) it follows that Ph(a; t+1) is the convolution of PK(a; t)
and Pg(t):

Ph(a; t+1)=
1
g

F
g/2

−g/2
PK(a − t; t) dt. (5)

Since all the angles {h1(t), h2(t),..., hN(t)} are distributed with Ph(a; t),
including in particular the ones of the K elements contained in Si(t), it
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follows that PK(a; t) is entirely determined by Ph(a; t). Equation (5) is there-
fore an implicit integral equation for Ph(a; t) which can be made explicit by
finding how PK(a; t) and Ph(a; t) relate to each other. The resulting relation
can then, in principle, be solved for Ph(a; t). In practice, the resulting integral
equation is highly involved, and no simple analysis is possible. We will there-
fore use a different strategy to find Ph(a; t). Since the order parameter given
in Eq. (4) is fully determined by the first cosine-sine moments of the station-
ary distribution Ph(a), we will transform the integral equation (5) into a set
of algebraic equations for the instantaneous cosine-sine moments of Ph(a; t)
(defined later in Eq. (9)). In the limit t Q . these equations will give the sta-
tionary values of the cosine-sine moments that determine the order parameter.

4.4. Computation of PK(a; t)

To find how PK(a; t) and Ph(a; t) relate to each other it is useful to
make an analogy with a 2D-biased random walk by considering VFK(t) as
the total displacement after the K steps vFj(t) ¥ Si(t).4 From the geometry

4 It is a ‘‘biased’’ random walk since the angles hi(t) are distributed according to the nonuni-
form distribution Ph(a; t).

shown in Fig. 4 it is easy to see that the joint probability distribution
PK(x, y; t) of the rectangular components (x, y) of VFK(t) satisfies the
following integral recurrence relation

PK(x, y; t)=F
p

−p

PK − 1(x − cos hiK
, y − sin hiK

; t) Ph(hiK
; t) dhiK

. (6)

Taking the two dimensional Fourier transform of the above expression and
solving the resulting algebraic recurrence relation, we get

P̂K(lx, ly; t)=5F
p

−p

Ph(a; t) e i(lx cos a+ly sin a) da6
K

. (7)

Expanding the exponential in powers of lx and ly and bringing the sums
outside the integral we obtain

P̂K(lx, ly; t)=5 C
.

n=0
C
n

m=0

inDm, n − m(t)
m! (n − m)!

lm
x ln − m

y
6K

, (8)

where the instantaneous cosine-sine moments Dm, n(t) are defined as

Dm, n(t)=F
p

−p

Ph(a; t) cosm(a) sinn(a) da. (9)
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Fig. 4. The vector VFK(t) is the sum of the K vectors contained in Si(t). Therefore, the prob-
ability distribution PK(a; t) of the angle a(t) can be obtained from the probability distribution
Ph(a; t) of the angles hi(t). In doing so, it is helpful to visualize VFK(t) as the total displacement
after K steps of a biased random walk, as illustrated above.

We need to perform the inverse Fourier transform of Eq. (8) to obtain
PK(x, y; t). In principle, PK(x, y; t) can only be fully determined by the
complete hierarchy of moments {Dm, n(t)}.

m, n=1. However, for large values
of K, an approximation based on the Central Limit Theorem can be
applied by retaining in Eq. (8) only terms up to second order in lx and ly,
and identifying this expansion with the one of a bivariate Gaussian func-
tion. With this approximation P̂K(lx, ly; t) can be expressed as

P̂K(lx, ly; t)=e iK[D1, 0(t) lx+D0, 1(t) ly] − K
2

[s
2
c (t) l

2
x+s

2
s (t) l

2
y+2s

2
cs(t) lxly], (10)

where s2
c (t), s2

s (t), and s2
cs(t) are given by

s2
c (t)=D2, 0(t) − [D1, 0(t)]2, (11a)

s2
s (t)=D0, 2(t) − [D0, 1(t)]2, (11b)

s2
cs(t)=D1, 1 − D1, 0D0, 1. (11c)

The inverse Fourier transform of the approximate P̂K(lx, ly; t) given in
Eq. (10) can now be computed to obtain a bivariate Gaussian distribution
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for PK(x, y; t). We then find PK(a; t) by transforming (x, y) into the polar
coordinates (r, a) and then integrating over r:

PK(a; t)=F
.

0
rPK(x(r, a), y(r, a); t) dt.

The result is

PK(a; t)=
`Dt

2pAt

e
−

KCt
2Dt 31+Bt

= pK
2DtAt

e
KB

2
t

2DtAt 51+Erf 1Bt
= pK

2DtAt

264 ,

(12a)

where Erf(x) is the error function and At, Bt, Ct, and Dt are defined
through

At=s2
s (t) cos2 a+s2

c (t) sin2 a − 2s2
cs(t) cos a sin a, (12b)

Bt=[s2
s (t) D1, 0(t) − s2

cs(t) D0, 1(t)] cos a

+[s2
c (t) D0, 1(t) − s2

cs(t) D1, 0(t)] sin a, (12c)

Ct=s2
s (t) D2

1, 0(t)+s2
c (t) D2

0, 1(t) − 2s2
cs(t) D1, 0(t) D0, 1(t), (12d)

Dt=s2
c (t) s2

s (t) − [s2
cs(t)]2. (12e)

4.5. Symmetry of Ph(a; t) and PK(a; t)

The symmetry of Ph(a; t) is preserved during the time evolution of the
network. Indeed, if at some particular time t we have Ph(a; t)=Ph(−a; t),
then at the next time step we will have Ph(a; t+1)=Ph(−a; t+1). The
above can be proven as follows. If Ph(a; t)=Ph(−a; t), from definitions (9)
and (11) we obtain D0, 1=D1, 1=s2

cs=0. Under such conditions, all the odd
terms in Eq. (12) disappear resulting in a symmetric PK(a; t). If PK(a; t) is
symmetric, then Eq. (5) implies that Ph(a; t+1) will also be symmetric,
which in turn implies that PK(a; t+1) is also symmetric, and so on.

From the analysis above it follows that, without loss of generality, we
can start out the dynamics of the network with a Ph(a; 0) symmetric, thus
restricting the evolution to a symmetric PK(a; t) which can be fully deter-
mined at every time step by D1, 0(t) and D2, 0(t). In this framework, Eqs. (4)
and (9) show that the magnetization is simply given by Y=limt Q . |D1, 0(t)|.
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4.6. Behavior of PK(a) Near the Phase Transition

For a symmetric Ph(a; t) we only need to compute D1, 0(t) and D2, 0(t).5

5 D0, 2(t) is also needed, but it is not independent of D2, 0(t) since they satisfy D2, 0(t)+D0, 2(t)
=1.

Combining Eqs. (5) and (9) we can establish the following recurrence
relation:

Dn, 0(t+1)=
1
g

F
p

−p

F
g/2

−g/2
cosn(a) PK(a − t; t) dt da. (13)

In the limit t Q . the distribution PK(a; t) will converge to the stationary
distribution PK(a) whereas the instantaneous moments D1, 0(t) and D2, 0(t)
will converge to the stationary values D1, 0 and D2, 0, respectively. Since
PK(a; t) depends explicitly on D1, 0(t) and D2, 0(t), in the limit t Q ., the
expression (13) transforms into two coupled equations for D1, 0 and D2, 0.
These equations are in general very difficult to solve, but we can find
approximate expressions for them which will be valid in the vicinity of the
phase transition.

It turns out to be that near the phase transition PK(a) can be expressed
as

PK(a)=P2p(a)+fg(a), (14)

where P2p(a)=(2p)−1 is a constant probability distribution in the interval
a ¥ [ − p, p] and fg(a) is a very small function with the property that

lim
g Q g −

c

fg(a)=0 uniformly.

In order to illustrate this behavior we find numerically the stationary dis-
tribution PK(a) for different values of g. This can be done by iterating
Eqs. (12) and (13) up to convergence. Figure 5 shows the resulting PK(a)
for K=15 and different values of g. In each case the initial probability
distribution was Ph(a; 0)=`2/p e−2a 2

. Note that as g approaches the
critical value gc % 4.7534 from below, PK(a) uniformly converges to the
constant probability distribution P2p(a) for which D1, 0=0 and D2, 0=1/2.

In fact, from Eqs. (9) and (12) we can deduce that P2p(a) is a trivial
‘‘fixed point’’6 of the integral equation (5) for all values of g. The solution

6 P2p(a) is a fixed point of the dynamics in the sense that if Ph(a; t)=P2p(a), it follows from
Eqs. (5) and (12) that also Ph(a; t+1)=P2p(a).

Ph(a; t)=P2p(a) corresponds to the case where all elements in the network

148 Aldana and Huepe



3.1416 1.5708 0 1.5708
α

0

0.5

1

PK(α)

η=3.50
η=3.90
η=4.30
η=4.70
η=4.72

1/2π

ππ/2–π/2 –π 0

Fig. 5. Stationary probability distribution PK(a) for K=15 and different values of g,
obtained by iterating Eqs. (12) and (13) up to convergence starting from PK(a; 0)=
`2/p e−2a 2

. Note that PK(a) Q P2p(a)=1/2p when g Q gc % 4.7534 from below.

have homogeneous random orientations, for which the order parameter Y

vanishes. Since our numerical simulations indicate that the order parameter
is always zero for g > gc, we expect Ph(a; t)=P2p(a) to be the only stable
solution in this regime. In contrast, for g < gc we have Y ] 0, indicating
that the solution Ph(a; t)=P2p(a) becomes unstable and another stable
solution appears, as Fig. 5 shows.

4.7. Algebraic Equations for D1, 0(t) and D2, 0(t) Near the Phase

Transition

In the limit t Q ., Eq. (13) transforms into two coupled algebraic
equations for the stationary values D1, 0 and D2, 0,

D1, 0=
1
g

F
p

−p

F
g/2

−g/2
cos(a) PK(a − t) dt da, (15a)

D2, 0=
1
g

F
p

−p

F
g/2

−g/2
cos2(a) PK(a − t) dt da, (15b)

where PK(a) depends explicitly on D1, 0 and D2, 0. These equations are in
general very difficult to solve because PK(a) is a highly nonlinear function
of D1, 0 and D2, 0. However, the fact that Ph(a) uniformly converges to P2p(a)
when g Q gc, allows us to write D1, 0 and D2, 0 around the phase transition as

D1, 0=d, (16a)

D2, 0=1/2 − E, (16b)
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with |d| ° 1 and |E| ° 1. Replacing these values into Eq. (12) and expand-
ing PK(a) in powers of d and E up to the third order we get

PK(a)=
1

2p
31+`pK cos(a) d − 2 cos(2a) E

+(K − 1) cos(2a) d2+2 cos(4a) E2+
`pK

2
[cos(a) − 3 cos(3a)] dE

+
`pK (K − 3)

4
[cos(3a) − cos(a)] d3

− 2[cos(2a)+cos(6a)] E3+2(K − 1)[cos(2a) − cos(4a)] d2E

+
3 `pK

8
[2 cos(a) − 3 cos(3a)+5 cos(5a)] dE24 .

Substituting this result in Eq. (15) and integrating with respect to t and a

we obtain the fixed point equations for d and E near the phase transition:

d=
`pK

4g
sin(g/2) d[4 − (K − 3) d2+2E+3E2],

E=
1
4g

sin g[2E − (K − 1)(1+2E) d2].

Retaining terms up to d2 in the solution to these equations, the square of
the magnetization Y2=d2 as a function of the noise intensity g is finally
given by

Y2(g) %
2(sin g − 2g)

(K − 2) sin g − (K − 3) g
11 −

g

`pK sin(g/2)
2 . (17)

The solid curve in bold on Fig. 2 plots the value of Y(g) as computed
from Eq. (17) with K=15. Near gc % 4.7534, the theoretical result and the
numerical simulation coincide perfectly as expected.

Using Eq. (17) we can find an analytic expression for the critical value
of the noise gc by imposing Y(gc)=0. We thus obtain the transcendental
equation

gc=`pK sin(gc/2). (18)

The values of K and gc for which this transcendental equation is satisfied
are plotted in Fig. 6. Note that gc Q 2p when K Q .. This result has

150 Aldana and Huepe



1 10 100 1000 10000
ln K

0

2

4

6

ηc

2π

Fig. 6. Critical value gc of the noise as a function of the connectivity K of the network for
the VNM with p=0.

a clear interpretation: when the connectivity K of each element of the
network increases, we need to introduce more and more noise to destroy
the order generated by the long-range correlations between the elements. It
is interesting to note that a very similar behavior occurs in both the SDPM
and the simple neural network model introduced in ref. 8. In the SDPM gc

approaches 2p when the effective parameter OKP=rr2 increases, where r

is the density of particles and r is the size of the vicinity within which the
elements interact (see ref. 19).

From the Taylor series expansion of Eq. (17) around gc, it follows that

Y2(g)=C(gc − g)+O((gc − g)2), (19)

where

C=−
dY2(g)

dg
:
g=gc

> 0.

This expansion is valid in the ordered region g < gc. In the disordered
region gc < g, Eq. (17) has no real solutions (Y2 becomes negative).
However, in this case Ph(a) is equal to the trivial fixed point P2p(a) and
therefore the magnetization vanishes. From the above it follows that the
phase transition is described by

Y=˛[C(gc − g)]1/2 for 0 < gc − g ° 1,

0 for g > gc.
(20)
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5. CONCLUSIONS

In this work we have studied some of the conditions that produce
a phase transition in a family of models of interacting 2D elements. By
introducing the VNM we have revealed the relevance of the existence of
long-range interactions for the emergence of the phase transition in this
family of models. A change in the statistical properties of these interactions
can vary the nature of the phase transition but cannot eliminate it. For
example, the VNM with p ] 1 and the R-SDPM exhibit a phase transition
which belongs to the same universality class as the mean field theory
(characterized by a critical exponent 1/2). These two models share the
property that the long-range interactions between the elements are estab-
lished in a fully random way.7 On the other hand, in the SDPM the

7 This is also true for the simple neural network model analyzed in ref. 8, where binary ele-
ments interact through a sort of majority rule plus noise (somehow similar to Eq. (1)).

underlying kinematical rule (3) generates a Markovian process producing
long-range interactions which are correlated in time. In this case the phase
transition exists but with a critical exponent which seems to differ from
1/2. (4, 5, 19) In contrast, when there are no long-range interactions between
the elements, as in the XY-model or the VNM with p=1, the phase tran-
sition disappears.

Throughout this work we have considered a VNM where each element
is connected to exactly K other elements of the system. This assumption
can be generalized by considering a model in which the number of connec-
tions per element follows a given probability distribution. Work in this
direction is in progress.
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5. A. Czirók and T. Vicsek, Collective behavior of interacting self-propelled particles, Phys. A
281:17 (2000).

6. B. Derrida and H. Flyvbjerg, Distribution of local magnetizations in random networks of
automata, J. Phys. A 20:L1107 (1987).

7. V. S. Dotsenko, Critical phenomena and quenched desorder, Phys. Uspekhi 38:457 (1995).
8. C. Huepe and M. Aldana-González, Dynamical phase transition in a neural network

model with noise: An exact solution, J. Stat. Phys. 108:527 (2002).
9. P. C. Hohenberg, Existence of long-range order in one and two dimensions, Phys. Rev.

158:383 (1967).
10. L. P. Kadanoff, W. Götze, D. Hamblen, R. Hecht, E. A. S. Lewis, V. V. Palciauskas,

M. Rayl, and J. Swift, Static phenomena near critical points: theory and experiment, Rev.
Modern Phys. 39:395 (1967).

11. B. J. Kim, H. Hong, P. Holme, G. S. Jeon, P. Minnhagen, and M. Y. Choi, XY model in
small-world networks, Phys. Rev. E. 64:056135 (2001).

12. J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6:1181 (1973).
13. N. D. Mermin and H. Wagner, Absence of ferromagnetism or antiferromagnetism in one-

or two-dimensional isotropic heisenberg models, Phys. Rev. Lett. 17:1133 (1966).
14. D. Mukamel, Phase transitions in non-equilibrium systems, in Soft and Fragile Matter:

Nonequilibrium Dynamics, Metastability, and Flow, M. E. Cates and M. R. Evans, eds.
(Institute of Physics Publishing, Bristol, 2000).

15. J. Toner and Y. Tu, Long-range order in a two-dimensional dynamical XY model: How
birds fly together, Phys. Rev. Lett. 75:4326 (1995).

16. J. Toner and Y. Tu, Flocks, herds, and schools: A quantitiative theory of flocking, Phys.
Rev. E. 58:4828 (1998).

17. Y. Tu, J. Toner, and M. Ulm, Sound waves and the absence of galilean invariance in
flocks, Phys. Rev. Lett. 80:4819 (1998).

18. Y. Tu, Phases and phase transitions in flocking systems, Phys. A 281:30 (2000).
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